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Direct Phase Determination from Resonant T-Quantum Diffraction Experiments 

BY F. N. CHUKHOVSKII AND I.P. PERSTNEV 

Institute of Crystallography of the Academy of Sciences of the USSR, Moscow, USSR 

(Received 20 March 1972) 

The problem of phase determination from experiments on the Bragg reflexion of ~,-quanta in nuclear 
and electronic Rayleigh scattering is considered. In the general case of diffraction, the solution of the 
integral equation is obtained which connects the experimental reflecting power R~°(v) with the diffracted 
integral (over angles) intensity Rn(u) (v is the velocity of the MSssbauer source with respect to a scatterer, 
u is the energy deviation parameter from the exact resonance energy of the MSssbauer nuclei). The 
expressions for the magnitude and sign of the phase of the electronic structure factor are derived in the 
cases of perfect and mosaic crystals. The phase is determined from the asymptotic behaviour and the 
square of the experimental curve R~t)(v). 
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1. Introduction 

Up to now, in X-ray diffraction analysis, different 
direct and indirect methods (Carpenter, 1969; Rama- 
chandran & Srinivasan, 1970)have been developed, 
which permit a reliable enough interpretation of the 
atomic structure of crystals and molecular complexes 
from the angular distribution and the intensity of X- 
rays scattered. These methods, based on the use of a 
set of electronic structure factors ]F~e) I exp(irp~ e)) 
([F~e)l and ~0h e) are the amplitude and phase respectively) 
for the calculation of the electron-density distribution 
are continually being improved. 

However, owing to the discovery of the M~Sssbauer 
effect (M/Sssbauer, 1958, 1959), there appeared a new 
possibility of phase determination from resonant ?'- 
quantum diffraction experiments (Raghaven, 1961; 
Moon, 1961; Zhdanov & Kuz'min, 1968). The inter- 
ference of the channels of the resonance nuclear and 
electronic Rayleigh scattering was experimentally con- 
firmed by a number of authors (Black, Evans & O'Con- 
nor, 1962; Black, Longworth & O'Connor, 1964; 
O'Connor & Black, 1964; Voitovskii, Korsunskii, Novi- 
kov & Pazkin, 1968). The consequent theory of Bragg 
diffraction of the resonant ?,-quanta was given by Ka- 
gan, Afanas'ev & Perstnev (1968). In two papers by 
M/Sssbauer and co-workers (Parak, Mbssbauer & 
Hoppe, 1970; Parak, Mtissbauer, Biebl, Formanek & 
Hoppe, 1971) a special analysis was performed to 
determine the phases for protein and potassium ferri- 
cyanide K3Fe(CN)6. In particular, by Parak et aL 
(1971), the interference curves were computed by vary- 
ing the phase parameter ~0h e) for reflexions h =020 and 
040 of the crystal K3Fe(CN)6. Further, by comparison 
of the numerically calculated and experimental curves 
the phases ,o ce) ,o (e) V'0z0, v'040 were determined. 

The purpose of the present paper is to discuss a new 
approach to direct phase determination from ?'-spec- 
troscopy diffraction experiments. 

2. Theory 

Consider a ?'-quantum beam falling on the surface of 
a crystal. Of this beam, the fraction fs (f~ is the MOss- 
bauer factor of the source) of all ?'-quanta undergoes 
interference nuclear-electronic scattering and the frac- 
tion (1-f~) purely electronic scattering. Let us intro- 
duce the energy distribution function Is(E,v) of the ?'- 
quanta emerging from a source. The function Is(E,v) 
(v being the source velocity with respect to the scatterer) 
satisfies the normalization condition 

S OO dEIs(E, ) v = l .  

When the total intensity of the resonant ?' quanta dif- 
fracted along the h direction with a given energy is 
Rh(E), the integral reflecting power will be equal to 

I~_ dEI~(E,V)Rh(E)+(1--fs)Rh(c~). (1) R(~(v) =f~ 

The integral relation (1) is basic for determination of 
the phase which enters only the expression Rh(E) as 
a parameter. When E goes to infinity, the nuclear reso- 
nant scattering is practically negligible and Rh(E) is 
determined by the purely electronic scattering. This 
means that Rh(C~) contains no information about the 
phase ~0~ e). 

The explicit expression for Rn(E) essentially de- 
pends on the degree of crystal perfection, the collima- 
tion of the incident beam and the diffraction geometry 
(the Bragg or Laue diffraction cases). The formula for the 
intensity Rh(E) in the case of Bragg diffraction was 
given by Afanas'ev & Perstnev (1969). 

In order to emphasize the essence of a new approach 
to phase determination we further restrict our treat- 
ment to Bragg diffraction on thick crystals, when the 
crystal thickness is much greater than the ?'-quantum 
absorption length. In this case the analysis of the prob- 
lem is simplified. From the treatment below it will be 
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seen that the method developed in the present paper 
does not depend on the above assumption and solves 
the phase problem in the general case of resonant 7- 
quantum diffraction. 

To describe the energy distribution of the incident 
),-quanta one uses the Lorcntz function 

I~(E,v)= 1 _ _  FJ2 - (2) 

rc +(F,12)2 

Here E,, F~ are the mean energy and the width of the 
M/Sssbauer line of the source, c is the velocity of light. 
The expression (2) for Is(E,v) is practically exact under 
the condition that the Mtissbauer line is not split and 
that the self-absorption of the ,7-quanta inside the 
source is negligible. 

Let us introduce the following notation 

F~ E ~ t l + ; - ) - E ~  u,_  E _ E  ~ (3) 
,7 = ~ , u = r d 2  ' r d 2  ' 

where E~ and F~ are the energy and width of the M~Sss- 
bauer resonance level of the crystal nuclei. E~ and Fc are, 
in general, different from E~ and F~. We assume for 
simplicity that all resonant nuclei are identical. 

Using equation (3) one can transform (1) and (2) to 
the form 

(4) 

1 7 (5)  
I ~ ( u -  u') - n ( u -  u') z + ),z " 

The relation (4) can be considered as the integral equa- 
tion for finding the function Rh(U) via the experimental 
reflecting power Rk°(u). Making the direct and inverse 
Fourier transformations of equation (4) one after the 
other and taking account of equation (5) one obtains 

fs[Rh(U)--Rh(°°)] =cOs (70~-ff) [R(hi)(u)--Rh(°°)] 

+ --  sin 7 v.p. - u' (6) 
rc ~ u 

Here sin ( O)  cos ,7-~ is the symbol for the corresponding 

trigonometric series in powers of the differential op- 
erator ,70/Ou. 

Bearing in mind that R~'(u) is the experimental 
function, it is clear that the practical use of equation 
(6) is rather problematic. Hawever, from equation (6) 
one can obtain asymptotic relations, which, in prin- 
ciple, permit a simple determination of the phase {0~ "). 
Indeed, when the variable u is large the integral inten- 
sity R,(u) may be shown to behave as follows 

(;-) Rh(U) = Rh(oo) + A + + O (7) 
-h- ~ 

The coefficients A and B are functions of the phase 
parameter pie). 

After taking equations (6) and (7) into account, one 
readily obtains for the coefficients A and B 

B _  

1 lira u[R~O(u)_Rh(c~)], 
A =  f~ u-.oo 

l lim u,_[R~O(u)_Rh(oo)_ A]  
A u-~oo u 

(8) 

f 
oo 

v.p. du'[R~O(u ') - Rh(OO)]. (9) 
--oo 

Therefore the problem of phase determination may in 
practice be reduced to finding two real parameters, A 
and B, which are determined from the asymptotic be- 
haviour and the square of the experimental interfer- 
ence curve in accordance with equations (8) and (9). 
If the coefficients A and B of the expansion (7) are 
known from experiment, one can easily derive the 
equations for the phase of the electronic structure factor. 

Consider, for example, ,7-quantum Bragg diffraction 
by perfect and mosaic crystals when the splitting of 
the M~Sssbauer resonance level is negligible. As was 
mentioned, the proper expressions for Rh(U) were ob- 
tained for the case of the Bragg diffraction (b is the 
asymmetry parameter, b < 0) by Afanas'ev & Perstnev 
(1969) 

8 Iz~ol 1/ z"° I Rh(U)-- 3 sin 20B •[bZoh I P(s'q) '  

ImXoo+lbl lmzhh 2 ~1-~- I Im ~X0hZh0 (10) S= , q =  
2 [/Ibl IZo~h01 Im Zoo + Ibl Im Zhh 

[cf. Afanas'ev & Perstnev (1969) for details and the 
explicit form of the function P(s, q)]. 

In the case of a mosaic crystal the function Rh(U) 
under the usual experimental conditions is given by 

~ A 0  ]Zh0l  2 (11) 
Rh(U)-- 2fi sin 20B Imz0o + [b[ Im Zhh 

Equation (11) is derived under the assumptions that 
the secondary extinction is negligible and the angle col- 
limation of the incident beam AO is less than the charac- 
teristic mosaic misorientation 6. When AO > 3 one has 
to put the factor AO/3 in equation (11) equal to unity 
(mosaic blocks are assumed to be uniformly disor- 
dered over the angle fi). 

In equation (10) and (11) the bar above denotes an 
average over the incident ,7-quantum polarizations. 
With no nuclear level splitting the dynamical coeffi- 
cients Zoo, Z0h, Zh0, Zhh take the form 

,.c,,) Z(h~ C(") 
. ( e )  Z O O  Z ° ° = X °  '1- - u ~ '  Zh°=Z(lae)C(e)'q- u + i ' 

° " ' ( e ) f " ( e ) . - L - - - - ,  Zhh:Z(0e)Ar - J~(hnh) (12) 
Z0h = Z - h  "-" - -  U + i U +------i' 

where the upper indices e and n correspond to Fourier 
components of the electronic and nuclear polarizability. 
In the formulae (12) the resonance dependence of the 



F. N. C H U K H O V S K I I  A N D  I. P. P E R S T N E V  469 

nuclear components is explicitly distinguished. The 
electronic component of the polarizability X he) is con- 
nected with the electronic structure factor by the usual 
relation 

,~,2 e 2 
X(h ~) - F~e) 

7~ W o m c  2 

(Vo being the unit cell volume). 

3. P h a s e  determination 

Writing the coefficients X [~) and X(,"0 ) as follows 

xk e> = -Iz(FI  exp (i~0(,e)), X~ ) = -Ix~0~l exp (i¢0(h ")) 

and neglecting the dispersion corrections in the definition 
of the electronic phase ~o h~), one finds the following 
equations for ~0 h~) (the nuclear phase ¢0(, ") is assumed 
to be known): 

(a) for a perfect crystal, when lul >> max(l, Iz(~)oIx(ne)l) 
the function P(s,q) in equation (10) is approximately 
equal to 1 -  3zcs/4 and using the relations (7), (10) and 
(12) one obtains, after a number of simple transforma- 
tions 

A c(n) c (e) 

/~h((:xD ) = ( [C<~,[ ) 

Ix~o>l cos COb X 
Ix(.~)l(1 + l c o s  20B[)/2--3Zqze/Sl/l~ 

(c¢"~)~ Ix~dl~ sin 2 ~oh 

tion over u' in (4) may be carried out exactly. As a 
result, one obtains the final expression for the integral 
reflecting power 

R(O(u)=Rh(OO)q - Au+ B(7+ I/1 nt-[.ln/].le) I ]/1 nU fln/].,le • 

bt2 q-(~-1-],/1 +~.I~,)2 

Thus, in this particular case a phase-determination 
method different from (14) exists in principle, when 
the experimental function R(n°(u) may be used for ar- 
bitrary values of the variable u. 

The formulae (13) and (14) are obtained under the 
simple assumption that all the nuclei inside a unit cell 
are equivalent. Further, the dispersion corrections are 
not taken into account in the definition of the elec- 
tronic structure phase. 

In analysing the physical situation, it may be neces- 
sary to consider such factors as the dispersion correc- 
tions, the quadrupole or magnetic splitting of the 
M/Sssbauer nuclear level and the non-equivalence of 
the M~Sssbauer nuclear positions inside a unit cell. Nev- 
ertheless, it is clear that the general character of the 
relations (13), (14) will remain unchanged. This means 
that phase determination from the resonant },-quantum 
diffraction experiments should be possible. 

The authors are grateful to Dr S. S. Orlov for his 
helpful discussions. 

c (n )c (e )  
ic(~>l Ix(~l sin @h-3zqz,,/8l/i~ B ICCe>l 21xg>l 

R ~ ( ~ )  - lXhe>l(1 +1 COS 20nl)/2-- 3Z/Ze/81/'~ 
(13) 

(b) for a mosaic crystal when lul >> max(1,l/~-~,//t~) one 
has [cf. equations (7), (11), (12)] 

,4 Ixf,"o)l 2C(~)C (') 
/~h(c~ ) = 2 cos ~Oh , (14) - - - -  ~ 1 + cos 2 20n 

B 

~h(oo)  

Ix~dl z (c(">) 2 -  21x(.e)llx(.~l sin ~on C(e)C (n) fin 

IX(.e>12(1 +COS 2 20n)12 lz~ 

In equations (13) and (14) one puts ~0h=~0he)-~o(, "), 
/~, =X(0~)+ Iblx~d,/ze = (1 +lbl)  Im ,~(0 e). 

It should be noted that in the case of a mosaic crys- 
tal the simple equation for the phase ~0h e) may be de- 
rived not only in the region of the asymptotic behav- 
iour of Rh(U). From this, the function Rh(U) is equal to 

A u + B  
Rh(U ) = Rh(CXD ) Jr" U2 Jr- 1 + lx.ltx: " (15) 

Now inserting equation (15) into the basic equation 
(4) and taking equation (5) into account, the integra- 
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